
Self-Modulating Attention in Continuous Time 
Space with Applications to Sequential 

Recommendation

Chao Chen, Haoyu Geng, Nianzu Yang, Junchi Yan, 

Daiyue Xue, Jianping Yu, Xiaokang Yang 



Background and Motivation

▪ Challenge of attentions in Continuous Time Space:
▪ Attention models sequential positions, regardless of continuous timestamps

▪ Attention provides dense distribution over behaviors, different from its sparse 
nature

▪ Our contribution:
▪ Generalize regular attention to continuous time space

▪ Propose self-modulating layer (SMLayer) to model spatial-temporal dynamics

▪ Propose continuous time regularization (CTReg) to fit time-dependent patterns

User evolving behavior modeling



Generalize Attention to Continuous Time Space

▪ General attention

▪ Self-Modulated attention

where λ∗  is conditional intensity function of temporal point process 

▪ Properties of self-modulating attention
I. When λ∗(t | Ht, vi)=0, the impact of event vi is rejected. 
II. When λ∗(t | Ht, vi)<1, the impact of event vi is attenuated. 
III. When λ∗(t | Ht, vi)>1, the impact of event vi is amplified. 

Where:
Ht: historical interactions 
N(tj, tj +dt): the number of occurrences for item ij in an infinitesimal interval
F: Density function
F (t |Ht; v): Cumulative distribution function
S(t |Ht; v): Survival function = 1-F(t |Ht; v)
λ∗(t I Ht; v): conditional intensity function



Self-modulating Layer (SMLayer) 
▪ Impact of sequential positions

• Y is historical embedding，Z is positional encoding

• Q, K, Vseq are query, key, value, and H is self 
attention outputs

• Impact of temporal timestamps
• Endogenous: influence within the sequence

• Exogenous: forces that reacts on the potential next item k 
during the time interval

• Build conditional intensity function
• fk  is softplus activation function

• Combination of positions and timestamps



Continuous Time Regularization

▪ Continuous time regularization (CTReg)
▪ The only supervision signal comes from user historical behaviors, irrelevant to time 

interval

where λk is conditional intensity for type k, and λ is log-survival probabilities:

▪ Overall objective function:



Experiments
▪ Sequential Recommendations

▪ Datasets: Amazon, Koubei, Tmall 

▪ Strong generalization Protocol 

▪ Evaluation metrics:

Hit Rate(HR), Normalized Discounted Cumulative 
Gain (NDCG)

▪ Ablation Studies

Ablation study on the Amazon, Koubei and Tmall datasets. The proposed self-modulating layer (SMLayer) 
and continuous-time regularization (CTReg) are adapted to attention-based and SASREC models. The 
performance is evaluated in terms of HR@10 and NDCG@10. 



Experiments
▪ Performance Comparison

SOTA baselines: SHAN [1], DIN[2], GRU4REC[3], SASREC[4], SASREC+[5]
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Performance comparison between the baselines and our proposed method on the Amazon, Koubei and Tmall datasets 
in terms of HR@10 and NDCG@10. Boldfaces mean that the method performs statistically significantly better under 
t-tests, at the level of 95% confidence level. We emphasize the comparison against SASREC+, a variant of 
SASREC equipped with functional time embedding which captures continuous-time temporal dynamics. 
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