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Learning Substructure Invariance for 
Out-of-Distribution Molecular Representations

Nianzu Yang, Kaipeng Zeng, Qitian Wu, Xiaosong Jia, Junchi Yan
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Left: the shared substructure hydroxy (-OH) invariantly contributes to the water 
solubility of the two molecules which contain different scaffolds, i.e. sampled from 
different environments by definition. 
Right: the water solubility of the two molecules with different sizes can be attributed 
to the shared substructure carboxy (-COOH) invariantly, where different sizes are 
regarded as indicators to define different environments.

Results
Methods BACE BBBP SIDER HIV
GCN 80.01 ± 3.49 67.92 ± 1.07 58.90 ± 1.30 76.35 ± 2.01
GCN + virtual node 77.51 ± 3.07 68.19 ± 1.86 60.71 ± 1.34 75.76 ± 2.21
GCN + ours. 84.33 ± 1.07 70.62 ± 0.99 63.38 ± 0.67 77.73 ± 0.76
GIN 77.83 ± 3.15 66.93 ± 2.31 59.05 ± 1.47 76.58 ± 1.02
GIN + virtual node 79.64 ± 2.02 66.77 ± 0.95 59.12 ± 0.95 77.11 ± 0.96
GIN + ours. 81.09 ± 2.03 69.84 ± 1.84 61.63 ± 1.08 78.31 ± 0.24
GraphSAGE 77.41 ± 1.19 70.58 ± 0.58 58.00 ± 0.95 76.98 ± 1.13
GraphSAGE + virtual node 78.34 ± 2.08 69.29 ± 0.99 59.48 ± 1.37 77.28 ± 1.53
GraphSAGE + ours. 82.95 ± 0.85 71.02 ± 0.75 61.09 ± 0.28 79.39 ± 0.51

Dataset IC50 EC50
Environment Assay Scaffold Size Assay Scaffold Size
ERM 70.93 ± 2.10 67.31 ± 1.72 67.40 ± 0.56 69.35 ± 7.38 63.92 ± 2.09 60.94 ± 1.95
IRM 70.85 ± 2.41 66.06 ± 1.23 58.46 ± 2.11 69.94 ± 1.03 63.74 ± 2.15 58.30 ± 1.51
DeepCoral 69.82 ± 4.23 66.36 ± 2.57 59.21 ± 2.09 69.42 ± 3.35 63.66 ± 1.87 56.13 ± 1.77
DANN 70.00 ± 1.03 63.61 ± 2.32 65.77 ± 0.47 66.97 ± 7.19 64.33 ± 1.82 61.11 ± 0.64
MixUp 70.22 ± 3.66 66.43 ± 1.08 67.77 ± 0.23 70.62 ± 2.12 64.53 ± 1.66 62.67 ± 1.41
GroupDro 69.98 ± 1.74 64.09 ± 2.05 58.46 ± 2.69 70.52 ± 3.38 64.13 ± 1.81 59.06 ± 1.50
Ours. 71.38 ± 0.68 68.02 ± 0.55 66.51 ± 0.55 73.25 ± 1.24 66.69 ± 0.34 65.09 ± 0.90

Performance comparison with baselines on 4 out-of-distribution molecular property 
prediction datasets from Open Graph Benchmark in terms of ROC-AUC (%), 
namely, BACE, BBBP, SIDER and HIV. The best and the runner-up results are 
highlighted in bolded and underlined respectively. We emphasize the comparison 
against `∗ + virtual node‘, a variant of the original method augmented by an 
additional node connecting to all nodes in the raw graphs.

Evaluation with other OOD generalization methods on 6 out-of-distribution datasets 
from DrugOOD in terms of ROC-AUC (%). The best and the runner-up in each 
columns are highlighted in bolded and underlined respectively. Note the baselines 
except ERM and MixUp all require environment labels. All methods including ours 
use GIN as backbones.

Our method achieves up to 5.9% and 3.9% improvement over the 
strongest baselines on OGB and DrugOOD benchmarks, respectively!

- To our best knowledge, this is the first work that formulates the OOD problem in 
MRL background and proposes to leverage the invariance principle which opens a new 
perspective for handling substructure-aware distribution shifts.

- Under the environment-invariance principle with specific substructure invariance 
priors, we propose a new learning objective to learn robust representations. In 
particular, our model does not require environment labels which in fact can be noisy and 
unreliable, but instead achieve environment inference in an unsupervised manner. This 
design endows our model with practical applicability for molecular OOD learning 
where the manual specifications of the environments are often unavailable.
- Results demonstrate that our model yields consistent and significant improvements 
over various existing MRL methods as backbones and also achieves competitive or 
even superior prediction compared to state-of-the-art models tailored to OOD learning 
with environment labels used as extra inputs in both training and testing.
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Problem Formulation
A molecular graph can be represented as 𝐺 = (𝑉, 𝐸), where 𝑉 is the graph's node 
set corresponding to atoms constituting the molecule and 𝐸 denotes the graph's 
edge sets corresponding to chemical bonds. The training and testing molecule 
graph datasets are denoted as 𝒢!"#$% = {(𝐺$, 𝑦$)}$&'(!"#$% and 𝒢!)*! = {(𝐺$, 𝑦$)}$&'(!&'! . 
Notice that the test dataset is drawn outside the distribution of the training dataset. 
The goal of molecule representation learning task is to predict the target label 
given y the associated input molecule G. 
We can formulate the OOD problem on MRL tasks as:

Invariance Principle
Sufficiency: 

shows sufficient predictive power for the target

The (bio)chemical properties of a molecule are usually 
associated with a few privileged molecular substructures!

min
f

max
e∈E

E(Gi,yi)∼p(G,y|e=e)[l(f(Gi), yi)|e].

Invariance: 
contributes to equal (optimal) performance for the
downstream tasks across all environments

Overview. The whole training procedure is divided into two stages: 
1) Optimize the environment-inference model. Given an input molecule 
(G,y), we first infer the latent environment variable e. This model is made 
up of the Environment Classifier and the Conditional GNN. They are 
responsible for modeling 𝑞!(e|G,y) and 𝑝"(y|G,e), respectively. 
2) Optimize the molecule encoder and the final predictor. We can use any 
existing MRL method as the Complete Encoder to learn a molecular 
representation. Meanwhile, we decompose the molecule into substructures 
and use a simple GNN model as the Substructure Encoder to learn a 
representation for each substructure. We next use the representation as 
query and then attentively aggregate substructures' representations to 
obtain the final representation, which is then fed to the Predictor.

Existing MRL methods do not differentiate invariant and spurious 
substructures. Hence, the spurious correlations between irrelevant 
substructures and the target label will be encoded to learned molecular 
representations. When tested on unseen environments, the downstream 
classifier will be easily misled by these spurious correlations.

With the knowledge that (bio)chemical properties of a molecule are usually 
associated with a few privileged substructures, we aim to suppress such 
spurious correlations and leverage environment-invariant substructures that 
more stably relate with the labels across environments to learn invariant 
molecular representations. Notice that the learned invariant molecular 
representations should satisfy the invariance principle.

Introduction


