
Self-Modulating Attention in Continuous Time Space 
with Applications to Sequential Recommendation

Abstract
User interests are usually dynamic in the real world, which poses both 
theoretical and practical challenges for learning accurate preferences from 
rich behavior data. Among existing user behavior modeling solutions, 
attention networks are widely adopted for its effectiveness and relative 
simplicity. Despite being extensively studied, existing attentions still suffer 
from two limitations: i) conventional attentions mainly take into account the 
spatial correlation between user behaviors, regardless the distance 
between those behaviors in the continuous time space; and ii) these 
attentions mostly provide a dense and undistinguished distribution over all 
past behaviors then attentively encode them into the output latent 
representations. This is however not suitable in practical scenarios where a 
user's future actions are relevant to a small subset of her/his historical 
behaviors. In this paper, we propose a novel attention network, named self-
modulating attention, that models the complex and non-linearly evolving 
dynamic user preferences. We empirically demonstrate the effectiveness of 
our method on top-N sequential recommendation tasks, and the results on 
three large-scale real-world datasets show that our model can achieve 
state-of-the-art performance.

where gk(t) signifies continuous time temporal dynamics, and fk is the 
softplus activation function:

Self-modulating Layer (SMLayer)

We introduce a specific implementation, self-modulating layer (SMLayer) 
with application to sequential recommendation.
The widely used self-attention in Sequential recommendation has following 
form:

Self-modulating Attention
Qualitative Analysis

Example of user preference intensities on Koubei. The user usually 
purchases the items from category c4 for all the time, and he/she starts to 
repeatedly buy the items from category c6 after time t9. The darker color 
corresponds to the higher intensity
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Comparison to state-of-the-art Baselines on three benchmark Datasets

Ablation Study

Empirical Results

The motivation for designing attention in continuous time space is to directly 
inform the correlation p(vij∣Ht) with the expected number of occurrence 
E [N( t , t +d t ) ∣ ∣ H t − , v i j ] ,  cond i t i ona l  on  t he  h i s t o r y  H t − ,  whe re 
H t−=H t∪{t j+1/∈(t j, t)} and N(t, t+dt)∈{0,1} denotes the number of 
occurrences for item ij in an infinitesimal interval. 

The dynamic processes will be characterized by conditional intensity 
function λ*(t∣Ht). The generalized self-modulating attention could be 
formulated as:

where all W are projection matrices, Q, K, Vseq are separately the query, key 
and values matrices obtained by different transformations of the input X, and
H is the output representations of conventional attentions. Further we 
present the formulation of conditional intensity function:

We present experimental results on three large-scale datasets (Amazon, 
Koubei, Tmall) against sequential SOTA recommendation baselines. 

We further conduct ablation study to equip generalized self-modulating 
attention on DIN (Deep interest network) with proposed SMLayer and 
CTReg (Continuous time regularization) to validate our methods:

Quantitative Analysis

Theoretical Results
Generalization Bound. Suppose that the loss function is L-Lipschitz, and for 
the est imate R on an random example set  Ω,  we bound ρ |Ω|  = 
supP∈F∑(u,i)∈Ω‖Pi,∗‖0 and μ= sup(u,i,k) ∈ Ω|Pu,k(VB)k,j|, then with probability at 
least 1−δ, we have the bound:

In preference learning, the model parameters are usually optimized by 
minimizing the reconstruction error. The only source of supervised signal is 
from the behavior data (i.e.,R) that is independent of time Intensity function 
learned in protocol above might probably diverge from the complex 
continuous-time patterns contained in the data. CTReg (continuous time 
regularization) is defined by:

The final objective function is minimization of empirical risk with CTReg as:

Continuous Time Regularization (CTReg)


