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Abstract
Machine learning has revolutionized many fields,
and graph learning is recently receiving increas-
ing attention. From the application perspective,
one of the emerging and attractive areas is aid-
ing the design and discovery of molecules, espe-
cially in drug industry. In this survey, we provide
an overview of the state-of-the-art molecule (and
mostly for de novo drug) design and discovery aid-
ing methods whose methodology involves (deep)
graph learning. Specifically, we propose to cate-
gorize these methods into three groups: i) all at
once, ii) fragment-based and iii) node-by-node. We
further present some representative public datasets
and summarize commonly utilized evaluation met-
rics for generation and optimization, respectively.
Finally, we discuss challenges and directions for fu-
ture research, from the drug design perspective.

1 Introduction
In recent years, artificial intelligence based drug discovery
has been more and more conspicuous since it greatly re-
duces time, money and labor costs for developing novel
drugs [Jiménez-Luna et al., 2020; Zhu, 2020; Kim et al.,
2020]. Among the processes of drug development, gener-
ating chemical molecules with good quality and optimizing
chemical molecules for desired properties are of particular
importance. So the challenge lies in how to apply machine
learning methods to generate “good” molecules with or with-
out additional constraints. Different approaches and mod-
els have been designed till now, including numerous gen-
erative model [Jin et al., 2018; Shi et al., 2020; Jin et al.,
2020a], reinforcement learning (RL)-based models [You et
al., 2018; Khemchandani et al., 2020; Jin et al., 2020b;
Yang et al., 2021a; Chen et al., 2020], sampling-based mod-
els [Xie et al., 2021; Fu et al., 2021; Seff et al., 2019]
and evolutionary methods [Brown et al., 2004; Jensen, 2019;
Nigam et al., 2020]. To characterize molecules, several types
of molecular representations range from simple sequences of
molecule entities to manually predefined molecular features

∗The first two authors contribute equally to this paper. Corre-
spondence author is Junchi Yan.

[Redkar et al., 2020] have been widely mentioned, while
string-based and graph-based representations are two main
methods used in recent years. Since the graph-based repre-
sentation can catch the inherent structure of molecules, this
paper focuses on graph-based methods.

There also exist surveys on molecule generation and opti-
mization. [Guo and Zhao, 2020; Faez et al., 2021] both pro-
vide a comprehensive overview of the literature in the field
of deep generative models for graph generation. But they do
not focus on molecules only. Apart from molecules, they also
present deep generative models designed for other domains.
As for [Elton et al., 2019; Alshehri et al., 2020], they both put
emphasis on the four architectures often utilized as backbone
model for molecule design methods, namely, recursive neural
networks, autoencoders, generative adversarial networks, and
reinforcement learning. It is also worth mentioning that [El-
ton et al., 2019; Alshehri et al., 2020; Guo and Zhao, 2020;
Faez et al., 2021] all discuss molecule design methods based
on different molecular representations, including Simplified
Molecular Input Line Entry System (SMILES) [Anderson et
al., 1987], 2D representation referring to connectivity graph
and 3D representation that contains coordinates of the atoms
within a molecule. There have been a rich body of literature
on SMILES-based generative models [Gómez-Bombarelli et
al., 2018; Kang and Cho, 2018; Putin et al., 2018; Grisoni
et al., 2020; Griffiths and Hernández-Lobato, 2020]. But
the number of works on 3D-generative methods for molecule
is quite small in contrast. Existing representative 3D meth-
ods include G-SchNet [Gebauer et al., 2019], E-NF [Gar-
cia Satorras et al., 2021], GEN3D [Roney et al., 2022] and
G-SphereNet [Luo and Ji, 2022].

Context-sensitive SMILES-based molecule generation ap-
proaches cannot ensure 100% chemical validity [Elton et al.,
2019] unless complicated constraints are added. However,
2D-based molecule generation approaches are easily able to
ensure that the generated molecules are 100% chemically
valid. Different from existing surveys mentioned above, our
survey puts emphasis on the molecule generation’s applica-
tion for drug design and conducts a comprehensive overview
of the state-of-the-art drug design methods based on 2D rep-
resentation, i.e. only from a graph learning perspective.

In this survey, we provide a thorough review of different
state-of-the-art graph-based molecule generation and opti-
mization methods proposed in recent years and classify them
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into three categories in terms of their generation strategy,
namely all-at-once, fragments-based and node-by-node. Rep-
resentative public datasets are also discussed along with the
common evaluation metrics. Furthermore, we give a thor-
ough analysis of existing challenges and suggest three poten-
tial directions for future research.

2 Preliminaries and Problem Formulation
In this section, we first introduce graph-based molecule rep-
resentation. Then, we formally formulate the problem of
molecule generation and optimization task, respectively.

2.1 Graph-based Molecule Representation
Graph-based molecule representation uses molecule graph
G = (V,E) to model molecule, where V is the graph’s
node set mapping to atoms constituting a molecule and E
is denotes the graph’s edge set mapping to chemical bonds,
with |V | = n and |E| = m. In molecule graph, nodes are
sometimes representing atomic types from the periodic ta-
ble, or representing certain kinds of molecule fragments. The
node feature matrix X characterizes the property of each node
while the adjacency matrix A characterizes the relationships
between each node. Let the number of edge types be b and the
number of node types be c, then we have A ∈ {0, 1}n×n×b
and X ∈ {0, 1}n×c, where Aijk = 1 when there exists an
edge with type k between the ith and jth nodes, otherwise 0.

2.2 Problem Formulation
Molecule generation and optimization are closely related, but
not all existing works on molecule generation involve opti-
mization due to it is a further problem. Existing works involv-
ing optimization should propose a novel generative model for
molecule generation first and then consider optimizing gen-
erated molecules for desired properties.

Molecule Generation
Generation tasks aim to generate novel samples from a sim-
ilar distribution as the training data [Faez et al., 2021]. A
molecule generation method intends to generate novel, di-
verse molecules which follow the unknown data distribution
p(G) provided by a set of graphs DG. A machine learning
method towards this problem usually proposes a model to
learn form large scales of data which either obtains an im-
plicit strategy or estimates the p(G) directly and then samples
from the distribution to generate new molecules.

Molecule Optimization
In the scenario of molecule optimization, we are usually given
a score function f measuring several needed property and a
set of seed molecules with high scores. The goal of molecule
optimization is to discover molecules with a high property
score. Specifically, the problem can be formulated as given
a molecule space G and a set of seed molecules G0 ⊂ G, we
aim to learn a molecule generative model p(g) such that the
expected score of generated molecules is maximized, i.e.

max
p(·)

Eg∼p(·)[f(g)] =
∫
g∈G

p(g)f(g)dg. (1)
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Figure 1: Three typical molecule generation strategies.

Notably, since molecule optimization problem is a kind of
molecule generation problem in essence, by adding some
constraints to the latter, we usually expect the distribution of
generated molecules to be novel and diverse as well.

3 Generation and Optimization Strategies
For classifying existing methods of de novo molecule gen-
eration or molecule optimization, in this paper we propose
to base on their generation or optimization granularity level
as shown in Fig. 1: i) using an all-at-one generation or opti-
mization strategy; ii) adopting rational substructures as edit-
ing blocks; or iii) building graphs in a node-by-node setting.
We describe their main features as summarized in Table 1.

3.1 Generation Strategy I: All at once
There are a number of deep graph generators to generate the
entire molecular in one shot, which we call “All at once”.

VGAE [Kipf and Welling, 2016] is a framework for un-
supervised learning on graph-based data built upon varia-
tional autoencoder (VAE) [Kingma and Welling, 2014].The
graph generator makes use of latent variables and learns in-
terpretable latent representations to generate new molecular
graph. Unlike VGAE, which can only learn from a single in-
put graph, GraphVAE [Simonovsky and Komodakis, 2018]
proposes another VAE-based generative model that can learn
from a set of graphs. The encoder of GraphVAE uses a Graph
Convolutional Network (GCN) [Zhang et al., 2019] to embed
the input graph into continuous representation z while the de-
coder of GraphVAE outputs a probabilistic fully-connected
graph constrained by a predefined maximum size. RVAE [Ma
et al., 2018] is another AE-based model for molecule gen-
eration, which proposes a novel regularization framework to
guarantee semantic validity. To generate graphs of larger size,
a model named MPGVAE [Flam-Shepherd et al., 2020] ap-
plies a message passing neural network (MPNN) [Gilmer et
al., 2017] to the encoder and decoder of a VAE, avoiding
complex graph matching operations.

MolGAN [De Cao and Kipf, 2018] proposes an implicit
generative model for small molecular graph which utilizes
generative adversarial network (GAN) [Goodfellow et al.,
2014]. It first samples a latent vector z from N (0, 1), then
it generates a graph all at once using an MLP. GraphNVP
is the first known molecule generation model based on in-
vertible normalizing flow. It performs Dequantization tech-
nique [Dinh et al., 2017; Kingma and Dhariwal, 2018] to



transform discrete adjecency tensor and node label matrix
into continuous node features and then uses coupling layers
to obtain latent representations z = Concate(zA, zX). After
sampling a latent vector z from a known prior distribution pz
and splitting z into zA and zX, GraphNVP takes two steps to
generate a molecule. The first is generating a graph structure
A from zA and the second is generating node attributes X
based on the structure A from zX.

3.2 Generation Strategy II: Fragments-based
Many models adopting rational substructures, also known as
fragments have been proposed, as building blocks to generate
high quality molecules, which are categorized as “Fragment-
based” here. Among them, some are based on autoencoder
framework. An earlier work proposes a model named JT-
VAE [Jin et al., 2018] which first decomposes the molecu-
lar graph G into its junction tree TG, where each node in the
tree represents a substructure of the molecule. JT-VAE then
encodes both the tree and graph into their latent embeddings
zT and zG. As for decoding phase, JT-VAE first reconstructs
junction tree from zT then generates molecule graph from the
predicted junction tree by a graph decoder which learns how
to assemble subgraphs. Another AE-based model is Hier-
VAE [Jin et al., 2020a] which proposes a larger and more flex-
ible graph motifs as building blocks and achieves a higher re-
construction accuracy when facing larger molecule size. Dif-
ferent from JT-VAE, a molecule in HierVAE is represented
by a hierarchical graph with three distinct layers namely atom
layer, attachment layer and motif layer. The encoder gener-
ates the embedding of each node in all three layers while the
decoder reconstructs molecule coarse to fine.

To generate valid molecular graph, MHG-VAE [Kajino,
2019] proposes molecular hypergraph grammar (MHG) to
encode chemical constraints and both the encoder as well as
the decoder consist of three parts. Specifically,

Enc = EncH ◦ EncG ◦ EncN , (2)
where f ◦ g means f(g(·)), EncN encodes a molecule graph
into a molecule hypergraph, EncG converts hypergraph into
a parse tree and EncN encodes the parse tree into the la-
tent vector. The decoder acts as an inversion to the en-
coder. MoleculeChef [Bradshaw et al., 2019] uses a vocab-
ulary of common reactant molecules as building blocks to
generate synthetic molecules. Gated graph neural networks
(GGNNs) [Li et al., 2015] are adopted to embed each reac-
tant separately and the results are summed to generate one
vector. Thus, the encoder realizes the mapping of a multi-set
of reactants to a distribution over latent space. The decoder
uses an RNN to generate a multi-set of reactants from the
latent space. Specifically, the latent vector z initializes the
hidden layer and the RNN model outputs one reactant or ter-
minate at each generation step. Then the authors propose a
reaction model to predict how these generated reactants react
together to generate new molecules. Instead of VAE, the ob-
jective function of WAE is adopted by MoleculeChef to learn
the model parameters, which involves minimizing:
L = Ex∼DEq(z|x)[c(x, p(x|z))] + λD(Ex∼D[q(z|x)], p(z)),
where c(·) is a cost function andD(·) is a divergence measure
namely maximum mean discrepancy (MMD).

There also exist several works using reinforcement learn-
ing (RL) to optimize the properties of generated molecules.
RationaleRL [Jin et al., 2020b] uses rationales as building
blocks for molecule generation. The first step of Ratio-
naleRL is extracting rationales that are likely accountable for
each property from molecules by MCTS [Chaslot, 2010] and
combining them for multiple properties. Specifically, during
search process, each state in the search tree means a subgraph
of the molecule and the property score of the subgraph in-
dicates the reward. Then RationaleRL uses graph generative
models to expand the rationales into full molecules. To gener-
ate realistic compounds, the graph generator is trained in two
phases, namely pre-training phase and fine-tuning phase. Af-
ter pre-training on a large set of real molecules, the graph gen-
erator is fine-tuned on property-specific rationales through
multiple iterations using policy gradient.

Similarly, in MolEvol [Chen et al., 2020], the authors adopt
an expectation maximization (EM)-like process for molecule
optimization. The framework also contains two stages: ratio-
nales search stage and molecule completion stage. The pro-
posed EM-like evolution-by-explanation algorithm alternates
between these two stages. Specifically, MolEvol first identi-
fies rationales by using an explainable local search method,
then it explores higher scoring molecules according to ratio-
nale samples by using a conditional generative model.

Another RL framework FREED [Yang et al., 2021a],
which couples a fragment-based generation method and a
novel error-prioritized experience replay (PER) to find chemi-
cally realistic and pharmacochemically acceptable molecules.
FREED adopts Soft Actor-Critic (SAC) [Haarnoja et al.,
2018a; 2018b] as basic reinforcement learning strategy and
takes three actions to decide where to attach, which fragment
to attach, and which bond to attach respectively in each iter-
ation to generate molecules iteratively. Notably, the second
action depends on the first and the third action depends on
the first two. PER is applied to optimize docking scores by
encouraging exploration when taking the third action.

Another emerging line considers molecule generation as
a sampling procedure. MARS [Xie et al., 2021] adopts
the general markov chain monte carlo (MCMC) [Geyer,
1992] sampling framework, and generates multi-objective
drug molecules. It starts from an initial molecule x(0) from
the molecular space X , then iteratively samples a candidate
molecule x′ ∈ X from the proposal distribution q(x′|x(t−1)),
x′ is either accepted or rejected based on an acceptance
rate A(xt−1, x′) ∈ [0, 1]. Thus, a sequence of molecules
{x(t)}∞t=0 is generated. The proposal distribution is repre-
sented by molecular graph editing actions including “adding
a fragment” and “deleting a bond”, which are formulated as
follows, respectively,

qadd(x
′|x) =1

2
padd(u)pfrag(k),

qdel(x
′|x) =1

2
pdel(b),

(3)

where u ∈ [n] is an indicator of atoms in x, k ∈ [V ] is an in-
dicator of fragments in the vocabulary of size V and b ∈ [2m]
is an indicator of bonds in x. MPNNs are used to predict the
probability distribution (padd, pfrag, pdel) = Mθ(x) where



Mθ is a MPNN model parameterized by θ. Furthermore,
MARS proposes to train the editing model adaptively by col-
lecting training data from the sampling paths.

MIMOSA [Fu et al., 2021] is another molecule genera-
tion approach built on the MCMC sampling framework. It
first pretrains two GNNs for substructure-type prediction and
molecule topology prediction respectively. Then it alter-
nates between two stages: molecule candidate generation and
molecule candidate selection. Specifically, MIMOSA gener-
ates molecule candidates by editing (add, delete and replace)
current molecules under the prediction of two pretrained
GNNs. For candidate selection, it assigns weights which can
encode multiple constraints of interest for molecule candi-
dates, thus Gibbs sampling (a particular type of MCMC) [Ge-
man and Geman, 1984] can be used to choose those plausible
molecules for next iteration.

Besides AE-based, RL-based and sampling-based meth-
ods mentioned above, some other methods also using frag-
ments to generate molecules are proposed recently. Mol-
CycleGAN [Maziarka et al., 2020] adopts a CycleGAN-
based [Zhu et al., 2017] method which generates a new
molecule Y with desired property based on an initial one X .
During the training phase, it first encodes X and Y to la-
tent vectors based on the method proposed in JT-VAE, then
it learns the transformation F : X → Y in latent space. As
for generation, Mol-CycleGAN takes X as input and obtains
its embedding by adopting the encoder of JT-VAE. Then the
optimized molecule Y , which is structurally similar to X , is
generated by the decoder based on F(X).

GFlowNet [Bengio et al., 2021] views the generative pro-
cess as a flow network and aims to generate a diverse set
of trajectories with high returns. The nodes represent states,
edges represent actions and the weight of an edge (i.e. flow)
represents the probability of taking an action. GFlowNet
formulates a generative policy that samples with a proba-
bility proportional to the given return function and trains a
generative model by conforming flow-matching conditions.
GFlowNet can be applied to molecule generation problem
where the “state” is the current molecule, and the “action”
is adding fragment from predefined fragments vocabulary to
the current moelcule (as well as a stop action).

Modof [Chen et al., 2021] only encodes the difference be-
tween molecules before and after optimization. To modify a
molecule, it first decodes a vector sampled from the learned
latent difference space to generate a fragment, then origi-
nal fragments are removed and new fragments at the pre-
dicted disconnection site are added. The authors also propose
Modof-pipe to modify a given molecule at multiple sites. It
is further enhanced into Modof-pipem, which can modify a
given molecule to multiple optimized molecules.

DEG [Guo et al., 2022] proposes a data-efficient genera-
tive model learned from much smaller datasets which only
contains ∼ 102 samples. Given a set of molecular structures
and a set of evaluation metrics, DEG learns a graph grammar
that samples molecules maximizing the metrics and generates
molecules from a sequence of production rules. DEG views
each molecule as a hypergraph and the grammar construction
iteratively creates production rules from subgraphs by con-
tracting hyperedges based on a parameterized function Fθ.

3.3 Generation Strategy III: Node-by-node
Besides generating entire molecules directly and using sub-
structures as building blocks, there are some other methods
proposed in recent years generating molecules in a manner
entitled “node-by-node”. We introduce them here one by one.

CGVAE [Liu et al., 2018] is an autoencoder-based gener-
ative model which builds GGNNs [Li et al., 2015] into the
encoder and decoder. CGVAE uses GGNN to embed each
node in an input graph G to a latent vector sampled from a
diagonal normal distribution. The decoder of CGVAE initial-
izes nodes with latent variables and generates edges between
these nodes sequentially based on two decision functions: fo-
cus and expand. Specifically, the focus function determines
which node to visit and the expand function decides which
edges to add from the focus node in each step. The procedure
will terminate when meeting the stop criteria. Notably, dur-
ing the generation, all node representations should be updated
once the generated subgraph changes. Furthermore, valency
masking is applied to expand function to ensure chemical va-
lidity. [Lim et al., 2020] proposes another AE-based method
which can generate molecules with target properties while
maintaining an arbitrary input scaffold as a substructure. Its
encoder adopts a variant of interaction network to encode a
whole-molecule graph G into a latent vector z. The decoder
is trained to generate molecules from z by taking a scaffold S
as input and sequentially adding nodes and edges to S based
on three loop stages namely “node addition”, “edge addition”,
“node selection” and a extra final stage named “isomer selec-
tion”. Furthermore, this model can generate molecules with
constraints by concatenating the constraint vector with z sam-
pled from latent space in decoding phase.

GCPN [You et al., 2018] proposes a stepwise approach
for molecule optimization based on RL. GCPN considers
the generation as a markov decision process (MDP) and a
molecule is sequentially constructed by either adding a bond
to connect existing atoms or connecting a new subgraph with
current molecular graph. Specifically, at each generation step
t, GCPN first computes the state st based on the current
graph Gt and the set of scaffolds S, then GCPN takes st
as input and predicts an action at . Graph Convolutional
Networks (GCN) [Zhang et al., 2019] and Proximal Policy
Optimization (PPO) [Schulman et al., 2017] are used to em-
bed nodes and optimize policy networks respectively dur-
ing each action prediction procedure. Furthermore, GAN
is applied to guarantee the generated molecules resembling
a given set of molecules. Recently, a model named Deep-
GraphMolGen [Khemchandani et al., 2020] further improves
GCPN by adding a molecular property prediction network to
GCPN. The prediction network consists of a Graph Convo-
lutional Network as a feature encoder together with a feed-
forward Network and applies an adaptive robust loss func-
tion to avoid potentially gross errors. In this way, GCPN
achieves extra rewards of additional properties (an exam-
ple provided is the binding potency of small molecules to
dopamine transporters), thus DeepGraphMolGen can gener-
ate multi-objective molecules with desirable properties.

GraphAF [Shi et al., 2020] is a flow-based model which
takes the advantage of autoregressive method. First, it adopts
Dequantization [Dinh et al., 2017; Kingma and Dhariwal,



Model Generation
Strategy Methodology Involve

Optimize? Venue

VGAE All at once Autoencoder-based % NeurIPS workshop [Kipf and Welling, 2016]
RVAE All at once Autoencoder-based % NeurIPS [Ma et al., 2018]
GraphVAE All at once Autoencoder-based ! ICANN [Simonovsky and Komodakis, 2018]
MPGVAE All at once Autoencoder-based ! Arxiv [Flam-Shepherd et al., 2020]
MolGAN All at once GAN-based % ICML workshop [De Cao and Kipf, 2018]
GraphNVP All at once Flow-based % Arxiv [Madhawa et al., 2019]

JT-VAE Fragment-based Autoencoder-based % ICML [Jin et al., 2018]
HierVAE Fragment-based Autoencoder-based ! ICML [Jin et al., 2020a]
MHGVAE Fragment-based Autoencoder-based % ICML [Kajino, 2019]
MoleculeChef Fragment-based Autoencoder-based % NeurIPS [Bradshaw et al., 2019]
RationaleRL Fragment-based RL-based ! ICML [Jin et al., 2020b]
MolEvol Fragment-based RL-based ! ICLR [Chen et al., 2020]
MARS Fragment-based Sampling-based ! ICLR [Xie et al., 2021]
MIMOSA Fragment-based Sampling-based ! AAAI [Fu et al., 2021]
FREED Fragment-based RL-based ! NeurIPS [Yang et al., 2021a]
Mol-CycleGAN Fragment-based CyclaGAN-based % J. Cheminformatics [Maziarka et al., 2020]
GFlowNet Fragment-based Flow Network-based % NeurIPS [Bengio et al., 2021]
Modof Fragment-based Autoencoder-based ! Nature MI [Chen et al., 2021]
DEG Fragment-based Graph Grammar-based ! ICLR [Guo et al., 2022]

CGVAE Node-by-Node Autoencoder-based % NeurIPS [Liu et al., 2018]
Lim et al. Node-by-Node Autoencoder-based ! Chemical Science [Lim et al., 2020]
GCPN Node-by-Node RL-based ! NeurIPS [You et al., 2018]
DeepGraphMolGen Node-by-Node RL-based % J. Cheminformatics [Khemchandani et al., 2020]
GraphAF Node-by-Node Flow-based % ICLR [Shi et al., 2020]
GraphDF Node-by-Node Flow-based ! ICML [Luo et al., 2021b]
STGG Node-by-Node Tree-based ! ICLR [Ahn et al., 2022]

Table 1: Recent representative works of molecule generation and optimization.

2018] technique to preprocess a discrete graph G = (A,X)
into continuous data z = (zA, zX) where A is edge feature
matrix and X is node feature matrix as mentioned before.
Then based on Autoregressive Flows (AF) [Papamakarios et
al., 2017], it computes conditional distributions:

p(zXi |Gi) =N (µX
i , (α

X
i )

2),

p(zAij |Gi,Xi,Ai,1:j−1 =N (µA
ij , (α

A
ij )

2),
(4)

where i is the generation step, µ and α are mean and stan-
dard deviation of a Gaussian distribution using different neu-
ral networks. A variant of relational GCN is applied to learn
the embeddings of node and the current graph, which can be
utilized in the computing of parameters of Gaussian distribu-
tions. As for generating new graph, GraphAF just samples
random variables εi and εij from base Gaussian distribution
and converts them into the molecule structures as follows:

zXi =εi � αX
i + µX

i ,

zAij =εij � αA
ij + µA

ij ,
(5)

where � is an element-wise multiple operator and ε =
{ε1, ε2, . . . , εn}

⋃
{ε21, ε31, . . . , εn,n−1} can be computed

according to an invertible mapping to molecule structures z.
Furthermore, it realizes parallel training and can be fine-tuned
with reinforcement learning to do molecule optimization.

Unlike GraphAF using continuous latent variables, another
flow-based model named GraphDF [Luo et al., 2021b] uses
discrete latent variables to map graph nodes and edges based
on invertible modulo shift transforms. Specifically, latent
variables ε = {ε1, ε2, . . . , εn}

⋃
{ε21, ε31, . . . , εn,n−1} are all

discrete and sampled from multinomial distributions, and the
discrete transforms for generating new nodes and edges are:

zXi =qNi ◦ · · · ◦ q1i (εi),
zAij =q

N
ij ◦ · · · ◦ q1ij(εij),

(6)

where f ◦ g means f(g(·)), and

qdi (ε) = (ε+ µdi ) mod c, d = 1, . . . , N,

qdij(ε) = (ε+ µdij) mod (b+ 1), d = 1, . . . , N,
(7)

where c and b is the total number of node types and edge
types, respectively. N is the number of modulo shift modules,
µdi and µdij are different functions. The use of discrete latent
variables and discrete transforms above makes GraphDF dif-
ferent from other flow-based methods while the main proce-
dure of generating molecules is similar to GraphAF.

A recent work presents a spanning tree-based graph gen-
eration framework entitled STGG [Ahn et al., 2022], which
considers molecule generation as a composition of a span-
ning tree and residual edges. STGG represents the molecule



Dataset Description Number of molecules Link

QM9 Stable small organic molecules made up of CHONF atoms 133, 885 http://quantum-machine.org/datasets/

GDB-17 Enumeration of small organic molecules up to 17 atoms > 166, 000, 000, 000 http://gdb.unibe.ch/downloads/

ZINC15 Commercially available compounds > 750, 000, 000 http://zinc15.docking.org/

ChEMBL Bioactive molecules with drug-like properties > 2, 000, 000 https://www.ebi.ac.uk/chembl/

PubChemQC Compounds with quantum chemistry estimated
property based on density functional theory 3, 981, 230 http://pubchemqc.riken.jp/

DrugBank FDA-approved drugs and other drugs public available > 14, 000 https://www.drugbank.ca/

Table 2: Representative datasets for molecule generation.

as a sequence of decisions d = {d1, d2, · · · , dT } based on
a proposed spanning tree-based grammar. These decisions
have seven forms: attach atom, attach bond, branch start,
branch end, res atom, res bond, and terminate. As for gen-
erating the sequence of decisions, it utilizes a tree-based
transformer neural network [Vaswani et al., 2017] together
with relative positional encoding for tree generation, and a
attention-based predictor for residual edge prediction. Fur-
thermore, invalid decisions are masked out during the genera-
tion process to guarantee the validity of generated molecules.

3.4 Discussion
The generation at different levels can have different advan-
tages in specific applications. While in general, the fine-
grained level manipulation at node level is flexible, while
it may be less efficient for generation and has difficulty in
modeling higher-level (sub)structure information. While the
fragment-based pipeline allows edition of sub-structures of
a molecule, which can be often meaningful to some specific
functionality and reaction. Finally, the once-for-all scheme
can be efficient while it may sometimes lack enough flexibil-
ity for incremental generation and optimization.

4 Datasets and Evaluation Metrics
Datasets. We list representative publicly available datasets
that are commonly used in molecule generation and optimiza-
tion tasks as in Table 2. Among them, ChEMBL and Drug-
Bank are dynamic databases that is often updated over time.

Evaluation Metrics. Generation and optimization for
molecules adopt two different sets of evaluation metrics.
Molecule generation evaluates the overall quality of gen-
erated molecules from a statistical perspective in terms of
these metrics, including validity (the percentage of gener-
ated molecules that are chemically valid), novelty (the frac-
tion of molecules not appearing in the training data), di-
versity (the pairwise molecular distance among generated
molecules), uniqueness (ratio of unique molecules) and re-
construction (the percentage of molecules which can be re-
constructed from their latent variables). As for molecule op-
timization task, it adopts another set of metrics for evalua-
tion on the basis of multi-property of generated molecules
, such as QED (quantitative estimate of drug-likeness) [Ertl
and Schuffenhauer, 2009], SA (synthetic accessibility) [Bick-
erton et al., 2012], logP (octanol-water partition coefficients)
and so on.

5 Challenges and Future Directions
Although graph-based deep learning has achieved great suc-
cess in the automation of molecule design, challenges still
exist due to the complexity of molecular structure. In this sec-
tion, we suggest three future directions for further research.
Polymers. Existing works mainly focus on small-molecule
design. Their performance degrades significantly when ap-
plied to designing larger molecules like polymers. The fail-
ure is likely due to many generation steps required to realize
larger molecules and the associated challenges with gradients
across the iterative steps [Jin et al., 2020a]. Therefore, new
methods should be developed to cope with larger molecules.
3D Drug Discovery. Generating 3D molecular geometries
remains under-explored currently. Compared to SMILES-
based and graph-based representation, the additional dimen-
sion significantly expands the molecular space to be explored,
which increases difficulty [Yang et al., 2021b]. However,
generating 3D molecules is meaningful and necessary due to
3D coordinates are important for accurate prediction of quan-
tum properties [Schütt et al., 2017]. Regardless of its signif-
icance, limited works are related to it, thus requiring further
research efforts.
Target Discovery. Here it refers to producing likely asso-
ciated drugs for a given disease. Chemical space is vast, but
the subset of molecules with certain desirable properties is
much smaller by contrast, e.g. activity against a given target,
that makes them well suited for the discovery of drug candi-
dates [Zhavoronkov et al., 2019]. The core of target discovery
lies in sampling compounds from promising regions of chem-
ical space and screening them for activity against the biolog-
ical target [Masuda et al., 2020]. Finding small molecules
that bind to a given target protein is a concrete challenging
task in this field, which is also known as structure-based drug
discovery. However, there is only a few examples of drug de-
sign on target protein [Luo et al., 2021a; Luo and Ji, 2022;
Yang et al., 2020], leaving a challenge in future work.

6 Conclusion
Generating molecules with desirable properties is of funda-
mental significance, especially in drug industry. We have in-
troduced a wide range of graph-based deep models and clas-
sified them into three categories according to their generation
strategy. Public datasets and commonly utilized evaluation
metrics are summarized. Finally, we also discuss challenges
and future promising directions in this exciting area.
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