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Abstract

Machine learning, particularly graph learning, is gaining increasing recognition for
its transformative impact across various fields. One such promising application is
in the realm of molecule design and discovery, notably within the pharmaceutical
industry. Our survey offers a comprehensive overview of state-of-the-art methods in
molecule design, particularly focusing on de novo drug design, which incorporates
(deep) graph learning techniques. We categorize these methods into three distinct
groups: i) all-at-once, ii) fragment-based, and iii) node-by-node. Additionally,
we introduce some key public datasets and outline the commonly used evaluation
metrics for both the generation and optimization of molecules. In the end, we
discuss the existing challenges in this field and suggest potential directions for
future research.

1 Introduction

In recent years, machine learning based drug discovery has been more and more conspicuous since
it greatly reduces time, money and labor costs for developing novel drugs [34, 87, 43]. Among the
processes of drug development, generating chemical molecules with good quality and optimizing
chemical molecules for desired properties are of particular importance. So the challenge lies in how to
apply machine learning methods to generate “good" molecules with or without additional constraints.
Different approaches and models have been designed till now, including including those based on
variational autoencoder (VAE) [44], generative adversarial networks (GAN) [27], reinforcement
learning (RL) [39], and more.

To characterize molecules, several types of molecular representations are devised, ranging from Sim-
plified Molecular Input Line Entry System (SMILES) strings [75] to manually predefined molecular
features [60]. Among them, SMILES-based and graph-based representation methods are the most
widely used in molecular generation tasks. Early molecular generation methods are SMILES-based.
SMILES can be seen as a type of 1D text representation. These SMILES-based methods cannot
ensure 100% chemical validity [16] unless complicated constraints are added. Meanwhile, molecules
can naturally be represented using graphs, which are essentially a type of 2D representation. Recently,
an increasing number of methods have shifted towards graph-based approaches. Unlike the 1D
SMILES-based methods, 2D molecule generation approaches can easily ensure that the generated
molecules are 100% chemically valid. Additionally, graph-based representation has the ability to ac-
curately depict the inherent structure of molecules. In light of the fact that graph-based representation
is currently the mainstream method, this study will specifically concentrate on existing graph-based
methodologies.
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There also exist surveys on molecule generation and optimization. [31] and [18] both provide a
comprehensive overview of the literature in the field of deep generative models for graph generation.
But they do not focus on molecules only. Apart from molecules, they also present deep generative
models designed for other domains, such as social networks. As for [16, 2], they both put emphasis
on the four architectures often utilized for molecule design methods. It is also worth mentioning
that [16, 2, 31, 18] all discuss molecule design methods based on different molecular representations,
including SMILES, 2D representation referring to connectivity graph and 3D representation that
contains coordinates of the atoms within a molecule. As previously noted, despite the extensive
literature on SMILES-based generative models [26, 41, 59, 29, 28], these methods have fallen out
of mainstream use. Additionally, there is a noticeable disparity in the volume of research between
3D-generative methods for molecules and the more prevalent 2D graph-based methods. For readers
interested in 3D-based methods, existing representative works like G-SchNet [22], E-NF [21],
GEN3D [61] and G-SphereNet [51] are recommended.

Different from the existing surveys mentioned above, our survey solely focuses on the drug design
tasks and conducts a comprehensive overview of the state-of-the-art molecular design methods based
on the 2D representation, i.e., only from a graph learning perspective. Additionally, compared to other
surveys and an earlier version of our own survey, we include some more recent methods, particularly
some diffusion-based methods, which were not covered in previous surveys.

In this survey, we provide a comprehensive review of the latest graph-based methods for molecule
generation and optimization. These methods are classified into three categories based on their
generation strategies: all-at-once, fragment-based, and node-by-node. The survey also covers key
public datasets and standard evaluation metrics used in this field. Additionally, we delve into an
in-depth analysis of the current challenges faced in this area and proposes three promising directions
for future research.

2 Preliminaries and Problem Formulation

In this section, we first introduce graph-based molecule representation. Then, we formally formulate
the problem of molecule generation task.

2.1 Graph-based Molecule Representation

In the field of Graph-based molecule representation [80, 32, 81], it is common to use a graph
G = (V,E) to model a molecule, where V is the graph’s node set mapping to atoms constituting
a molecule and E is denotes the graph’s edge set mapping to chemical bonds, with |V | = n and
|E| = m. In molecule graph, nodes are sometimes representing atomic types from the periodic
table, or representing certain kinds of molecule fragments. The node feature matrix X characterizes
the property of each node while the adjacency matrix A characterizes the relationships between
each node. Let the number of edge types be b and the number of node types be c, then we have
A ∈ {0, 1}n×n×b and X ∈ {0, 1}n×c, where Aijk = 1 when there exists an edge with type k
between the ith and jth nodes, otherwise 0. We can also represent the molecular graph using the
node feature matrix X and the adjacency matrix A, i.e., G = (A,X).

2.2 Problem Formulation

Generation tasks aim to generate novel samples from a similar distribution as the training data [18]. A
molecule generation method intends to generate novel, diverse molecules which follow the unknown
data distribution p(G) provided by a set of graphs DG. A machine learning method towards this
problem usually proposes a model to learn form large scales of data which either obtains an implicit
strategy or estimates the p(G) directly and then samples from the distribution to generate new
molecules.

3 Generation Strategies

For classifying existing methods of de novo molecule generation or molecule optimization, in this
paper we propose to base on their generation granularity level as shown in Fig. 1: i) using an all-at-
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Figure 1: Three typical molecule generation strategies.

one generation or optimization strategy; ii) adopting rational substructures as editing blocks; or iii)
building graphs in a node-by-node setting. We describe their main features as summarized in Table 1.

3.1 Generation Strategy I: All-at-once

There are a number of deep graph generators to generate the entire molecular in one shot, which we
call “all-at-once".

VGAE [46], built upon a variational autoencoder (VAE) [44], is a framework designed for unsu-
pervised learning with graph-based data. VGAE leverages latent variables and is trained to learn
interpretable latent representations, which are then used to generate new molecular graphs. Unlike
VGAE, which can only learn from a single input graph, GraphVAE [69] is another VAE-based gener-
ative model that can learn from a set of graphs. The encoder of GraphVAE uses a graph convolutional
network (GCN) [85] to embed the input molecular graph into a continuous representation z while
the decoder of GraphVAE outputs a probabilistic fully-connected graph constrained by a predefined
maximum size, from which discrete samples are drawn. However, GraphVAE encounters challenges
in effectively aligning with the training data distribution and relies on an expensive graph matching
procedure. In order to address these issues, MPGVAE [19] integrates a message passing neural
network (MPNN) [25] to the encoder and decoder of the GraphVAE. Furthermore, [53] proposes a
specialized regularization framework for training VAEs that encourages the satisfaction of validity
constraints for molecules, i.e. the number of bonding-electron pairs must not exceed the valence of
an atom.

In addition to the aforementioned VAE-based methods, there are also approaches that utilize other
generative models, such as MolGAN [12] and GraphNVP [54]. MolGAN proposes an implicit
generative model for molecular graphs, which adapts generative adversarial networks (GAN) [27] for
graph-structured data and integrates a reinforcement learning objective to encourage the generation
of molecules with desired properties. GraphNVP is the first known molecule generation model based
on invertible normalizing flow [13, 45]. It performs dequantization technique [13, 45] to transform
discrete adjacency tensor A and node label matrix X into continuous variables and then uses coupling
layers to obtain latent representations zA, zX. zA and zX are concatenated together to obtain the
final latent representation z of the molecule, i.e., z = CONCAT(zA, zX). After sampling a latent
vector z from a known prior distribution and splitting z into zA and zX, GraphNVP takes two steps to
generate a molecule. The first is generating a graph structure A from zA and the second is generating
node attributes X based on the structure A from zX. Furthermore, GraphNVP trains a linear regressor
on the latent space of molecules to quantitatively estimate a target chemical property. This enables the
interpolation of the latent vector of a randomly selected molecule along the direction of the desired
property, as learned through linear regression, thereby facilitating molecular optimization.
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In recent developments, innovative approaches to molecular generation have emerged, building upon
a class of advanced generative model known as diffusion models [33, 70]. GDSS [38], for instance,
introduces a novel graph diffusion process to model the joint distribution of nodes and edges, utilizing
a system of stochastic differential equations (SDEs). Subsequently, GDSS formulates specialized
score matching objectives tailored to this diffusion process to estimate the gradient of the joint log
density for each component. Moreover, it introduces a novel solver for the SDE system to facilitate
efficient sampling from the reverse diffusion process. It is essential to emphasize that GDSS embeds
graphs into a continuous space and introduces Gaussian noise to the node features and the graph
adjacency matrix. However, this approach removes the inherent sparsity of graphs, resulting in
entirely noisy graphs where structural information, such as connectivity or cycle counts, remains
undefined. Consequently, the continuous diffusion process can present challenges for the denoising
network in capturing the structural properties of the data. In contrast, inspired by Discrete Denoising
Diffusion Probabilistic Models (D3PMs) [4], a newly method DiGress [74] adopts a discrete diffusion
process that systematically modifies graphs with noise. This process involves the addition or removal
of edges and changes in categories. Additionally, DiGress employs a noise model that preserves the
marginal distribution of node and edge types during the diffusion process. Furthermore, it introduces
an innovative guidance procedure for conditioning graph generation on graph-level properties and
enhances the input of the denoising network with auxiliary structural and spectral features. While
DiGress has made notable advancements compared to GDSS, it still faces challenges in accurately
estimating the joint distribution of measurements derived from node features and molecular graph
structures. This challenge primarily arises from the approach of deriving separate embeddings
for nodes and edges, treating them as distinct entities. Therefore, a more recent diffusion-based
method called Wave-GD [11] has been introduced. Wave-GD harnesses the spectral dependencies
between node and edge signals to more effectively characterize their joint distributions through a
score-based diffusion model. By capturing their multi-resolution coherence, this model demonstrates
the capability to generate high-fidelity molecules while preserving the frequency characteristics
observed in the training samples.

3.2 Generation Strategy II: Fragment-based

Numerous methods have been proposed that utilize rational substructures, also known as fragments,
as building blocks to generate high-quality molecules, which are categorized as “fragment-based"
here.

Among these methods, a considerable number are based on the variational autoencoder. An earlier
typical work proposes a model named JT-VAE [35] which first decomposes the molecular graph
G into its junction tree T , where each node in the tree represents a substructure of the molecule.
JT-VAE then encodes both the junction tree and molecular graph into their latent embeddings zT and
zG, respectively. As for the decoding phase, JT-VAE first reconstructs junction tree from zT then
generates molecule graph from the predicted junction tree by a graph decoder which learns how to
assemble subgraphs.

JT-VAE achieved a landmark 100% validity, thanks to the implementation of a junction tree represen-
tation. This approach simplifies the process, as creating a tree structure is less complex compared
to generating a general graph with degree constraints. Meanwhile, MHG-VAE [40] refers to the
scenario where the decoder produces invalid molecules as a decoding error issue. While the tree
representation effectively mitigates the decoding error issue, it does come with certain limitations.
This representation focuses only on connections at the fragment level and fails to define the specific
atoms within the fragments that should be connected. Moreover, due to its lack of specificity at
the atom level, information regarding stereochemistry is not retained. To compensate, all potential
configurations are enumerated, and one is selected through the training of auxiliary neural networks.
In contrast, MHG-VAE can address the decoding error issue without the auxiliary neural networks.
MHG-VAE’s key innovation lies in its molecular hypergraph grammar (MHG), derived from the
hyperedge replacement grammar (HRG) [14]. In MHG, an atom is depicted as a hyperedge, while
a bond is represented by a node. HRG generates a hypergraph by substituting a non-terminal hy-
peredge with another hypergraph. Integrating HRG with MHG allows for atom-level connections,
and the stereochemistry can be seamlessly integrated into the grammar. Additionally, this approach
respects the number of nodes linked to each hyperedge, which corresponds to the valency of atoms in
molecular structures. Consequently, these principles facilitate the generation of valid molecules using
a single VAE architecture.
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HierVAE [36], another VAE-based model designed by the same authors as JT-VAE, introduces larger
and more flexible graph motifs as building blocks, exhibiting enhanced performance when dealing
with larger molecules. The encoder of HierVAE generates a multi-resolution representation for each
molecule, progressing in a fine-to-coarse fashion from atoms to connected motifs. Each hierarchical
level in this model integrates the encoding of its lower-level constituents with the graph structure at
that level. The autoregressive coarse-to-fine decoder of HierVAE adds motifs sequentially, one at
a time. This process interweaves the selection of a new motif with the task of determining how it
connects to the evolving molecular structure.

In the realm of drug discovery, there’s often a necessity for a specific scaffold to be included in the
synthesized molecule. MoLeR [56], also based on VAE, has been developed to cater to this need,
facilitating the extension of partial molecules. MoLeR integrates motifs (molecule fragments) into
its atom-by-atom generation process. When dealing with atoms that are part of a motif, MoLeR
concatenates the initial chemically relevant features with the motif embedding. For atoms not
associated with a motif, a special embedding vector is employed to indicate the absence of a
motif. To define a concrete generation sequence, MoLeR initially opts for an initial atom selection.
Subsequently, for each partial molecule, it proceeds to select the next atom from those that are
adjacent to the atoms previously generated. Following each selection, in cases where the presently
chosen atom is part of a motif, MoLeR incorporates the entire motif into the partial graph at once.
Furthermore, MoLeR enhances its molecular generation process by integrating Molecular Swarm
Optimization (MSO) [77], which aids in the optimization of the molecular structures.

Previous methods like JT-VAE and HierVAE constructed the vocabulary of molecular fragments
using simple hand-crafted rules, which may not effectively reveal frequent patterns in datasets.
Besides, in previous fragment-based methods, subgraph prediction and assembly are conducted
either autoregressively, as in HierVAE, or according to a pre-defined tree structure, as in JT-VAE.
However, both approaches have inherent limitations: each newly predicted subgraph can only attach
to a local set of previously generated subgraphs, leading to inflexibility. To overcome these issues,
PS-VAE [47] has been developed. PS-VAE begins by creating a vocabulary of molecular fragments
from a given dataset, starting with distinct atoms and progressively merging neighboring fragments to
update the vocabulary. This merge-and-update strategy leads to the formation of principal subgraphs,
a novel concept introduced in this paper, which represent frequent and significant repetitive patterns
in molecules. PS-VAE also theoretically ensures that any principal subgraph can be covered by the
developed vocabulary. Additionally, PS-VAE introduces a two-step subgraph assembling strategy: it
initially predicts a set of fragments sequentially and subsequently performs a global assembly of all
generated subgraphs. This method reduces dependency on permutation and places more emphasis
on global connectivity, offering a more robust approach compared to traditional fragment-based
methods.

In the original paper of MiCaM [23], another method based on VAE, the authors also highlight
the crucial importance of developing an effective motif vocabulary. Accordingly, MiCaM devises
an algorithm that identifies the most prevalent substructures based on their frequency within the
molecule library. It scans the entire library to detect fragment pairs that frequently occur adjacent to
each other within molecular graphs and subsequently merge these pairs into larger fragments. This
merging process is repeated for a pre-determined number of steps, accumulating fragments to form a
comprehensive motif vocabulary. The obtained motifs retain their structural connectivity information.
Therefore, they are referred to as connection-aware motifs in the paper. The generator of MiCaM
operates by concurrently selecting motifs to be added and specifying their connection modes. During
each step of the generation process, MiCaM concentrates on a nonterminal connection site within the
current generated molecule. This site is then utilized to identify another connection, presenting two
alternatives: (1) opting for a connection from the motif vocabulary, indicating the addition of a new
motif, or (2) choosing a connection from the current molecular structure, a move that leads to the
cyclization of the molecule.

Modof [10] stands as another advanced deep generative method designed for molecule optimization.
It operates by predicting a single disconnection site within a molecule and subsequently modifying the
molecule by altering the fragments at that site, including elements such as ring systems, linkers, and
side chains. What sets Modof apart from existing molecule optimization methods is its approach to
learning from and encoding the disparities between molecules before and after optimization at a single
disconnection site. When it comes to modifying a molecule, Modof generates only one fragment that
represents the anticipated difference. This is achieved by decoding a sample obtained from the latent
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difference space. Subsequently, Modof removes the original fragment at the disconnection site and
replaces it with the newly generated fragment. Its model training also employs the VAE objective.

MoleculeChef [8] has highlighted a significant issue in previous molecular generation methods. These
earlier methods often failed to provide instructions on how to synthesize the molecules they generated.
This lack of synthesis guidance implies that there are no assurances that the molecules produced by
these methods can be practically synthesized in real-world laboratory scenarios. In contrast to prior
research, MoleculeChef generates novel molecules by simulating virtual chemical reactions, closely
mimicking the discovery process of molecules in the lab. n MoleculeChef, the encoder is responsible
for mapping a multiset of reactants to a probability distribution in latent space, while the decoder
generates this multiset of reactants sequentially using a RNN [57]. The resulting set of reactants
is then processed through a reaction predictor to produce a final product. Notably, MoleculeChef
employs the Molecular Transformer [67] as the chosen implementation for the reaction predictor. The
paper acknowledges the possibility of utilizing a Variational Autoencoder (VAE) objective for training
MoleculeChef. However, due to the inherent complexity of MoleculeChef’s decoder, continuing
to use the VAE objective would pose significant training challenges. As a solution, MoleculeChef
ultimately opts to utilize the Wasserstein autoencoder (WAE) [72] objective. This decision is made to
address the aforementioned training challenges associated with the VAE objective effectively.

There also exist several works using reinforcement learning (RL) to optimize the properties of
generated molecules. An earlier work GCPN [84] stands out as a representative goal-directed 2D
molecule generation approach. Compared with graph generative models struggling to incorporate
desired molecular properties or constraints, RL excels at representing such hard constraints and
desired properties by designing environment dynamics and reward functions. Besides, RL enables
active exploration of the molecule space beyond the samples found in a dataset while the exploration
capabilities of generative models are constrained by the limitations of the training dataset. GCPN
formulates the graph generation task as a Markov Decision Process (MDP), where a molecule
is constructed sequentially. This construction process involves either adding a bond to connect
existing atoms within the graph or connecting a new fragment with the current molecular graph.
The intermediate rewards include step-wise validity rewards and adversarial rewards, while the
final rewards are computed as a sum over domain-specific rewards and adversarial rewards. The
domain-specific rewards comprise the combination of final property scores, whereas the adversarial
rewards are defined through a GAN. DeepGraphMolGen [42] builds upon the foundation of GCPN
and takes a further step in addressing the challenge of generating novel molecules with desired
interaction properties. In DeepGraphMolGen, interaction binding models are learned from binding
data using GCNs. Recognizing that experimentally obtained property scores may contain potentially
significant errors, DeepGraphMolGen incorporates a robust loss for the model. Notably, in contrast
to GCPN, the final reward in DeepGraphMolGen includes the pKi value [15] of the final molecule as
predicted by the trained model.

While GCPN and DeepGraphMolGen are capable of generating molecules with desired properties,
it remains challenging for them to generate molecules that simultaneously satisfy many property
constraints. RationaleRL [37], an RL-based 2D molecule generation method, has been introduced to
specifically tackle this limitation. Its core idea involves composing molecules from a vocabulary of
substructures known as molecular rationales. The first step of RationaleRL is extracting rationales
that are likely accountable for each property from molecules by Monte Carlo Tree Search (MCTS) [9]
and combining them for multiple properties. Specifically, during search process, each state in the
search tree means a subgraph of the molecule and the property score of the subgraph indicates the
reward. Then RationaleRL uses graph generative models to expand the rationales into full molecules.
To generate realistic compounds, the graph generator is trained in two phases, namely pre-training
phase and fine-tuning phase. After pre-training on a large set of real molecules, the graph generator
is fine-tuned on property-specific rationales through multiple iterations using policy gradient.

Previous RL-based methods for goal-directed molecular design often emphasized relatively straight-
forward objectives, such as QED [17]. However, achieving high scores in these simple molecular
properties does not necessarily ensure drug-likeness or therapeutic potential, underscoring the impor-
tance of adopting more relevant design objectives in generative tasks. In contrast, another RL-based
approach known as FREED [82] places its focus on a more meaningful optimization target, namely,
the docking score. This choice is made because docking simulations [65, 79] provide a more direct
and practical proxy for assessing therapeutic potential, making it a valuable metric in the context
of molecular design. FREED adopts a strategy for generating molecules that involves attaching a

6



chemically realistic and pharmacochemically acceptable fragment unit to a given sub-graph at each
step. Importantly, the model is enforced to create new bonds only at attachment sites that are consid-
ered suitable based on the fragment library preparation step. These strategies effectively leverage
prior knowledge in medicinal chemistry, ensuring that molecule generation remains confined within
the chemical space conducive to drug design. Additionally, FREED explores various explorative
algorithms, incorporating curiosity-driven learning and prioritized experience replay (PER) [63]. In
particular, FREED introduces an innovative PER method that defines priority based on the novelty
of experiences, estimated by the predictive error or uncertainty of the auxiliary reward predictor’s
outcome. This approach is designed to mitigate the lack of robustness observed in previous methods
and to encourage the exploration of diverse solutions during the molecular generation process.

Recently, a novel generative approach known as GFlowNet [6] has emerged, with close ties to RL.
GFlowNet is designed to tackle the challenge of learning a stochastic policy for generating an object,
such as a molecular graph, through a sequence of actions. The primary objective is to ensure that the
probability of generating an object is directly proportional to a specified positive reward assigned
to that object. GFlowNet views the generative process as a flow network, making it particularly
adept at handling scenarios where various trajectories lead to the same final state. For instance, in
molecular graph generation, there are multiple ways to sequentially add atoms to a molecule. In this
context, GFlowNet conceptualizes the set of trajectories as a flow and transforms the flow consistency
equations into a learning objective. This approach is analogous to how Bellman equations are utilized
in Temporal Difference methods [71]. Within the flow network framework, nodes represent states,
and edges represent actions. GFlowNet finds practical application in molecule generation, where
the ‘state’ corresponds to the current molecule, and the ‘action’ involves adding a fragment from a
predefined vocabulary of fragments to the current molecule or terminating the generation process.

Another emerging line considers molecule generation as a sampling procedure. One noteworthy
method in this category is MARS [78]. The core concept of MARS involves initiating the process
from a seed molecule and continually generating candidate molecules by making modifications to
fragments of molecular graphs from previous iterations. In MARS, the task of molecular design
is framed as an iterative editing process, with the overall objective being composed of multiple
property scores. To search for optimal chemical compounds, MARS employs the annealed Markov
Chain Monte Carlo (MCMC) sampling [24] technique. This approach allows for the exploration
of chemicals with novel and diverse fragments. MARS utilizes graph neural networks (GNNs)
to represent proposals for modifying molecular fragments. These GNNs adaptively learn their
parameters to propose fragment modifications. While MPNNs are used in practice, other GNN
architectures can also be integrated into the framework. Moreover, MARS leverages the sample
paths generated on-the-fly to adaptively train the proposal network, eliminating the need for external
annotated data. This adaptive learnable proposal mechanism enables MARS to continuously enhance
the quality of molecule generation throughout the process.

MIMOSA is another molecule generation approach built on the MCMC sampling method. MIMOSA
unfolds in three distinct stages. Initially, MIMOSA focuses on training a pair of property-neutral
GNNs. These networks are tasked with the prediction of molecular topologies and substructure
types. These substructures encompass atoms and rings. This step is crucial for improving the
embeddings of molecules, aiding in the later stage of sampling. Subsequently, MIMOSA leverages
these predictions to conduct three core substructure manipulations: ADDITION, REPLACEMENT, and
REMOVAL to generate new molecule candidates. In its final stage, MIMOSA evaluates these newly
generated molecules, assigning them weights based on criteria such as structural resemblance and
drug property constraints. Molecules that fulfill these specified criteria are then chosen for additional
processing rounds.

There’s another fragment-based method called DEG [30], which is also related to sampling. This
method seeks to resolve two primary challenges. Existing methods predominantly rely on deep
neural networks, necessitating extensive training on vast datasets, often comprising tens of thousands
of examples. Contrarily, real-world scenarios usually present significantly smaller, class-specific
chemical datasets, often just a few dozen samples, primarily due to the labor-intensive nature of
experimentation and data acquisition. This limited dataset size presents a substantial challenge for
deep learning-based generative models in effectively capturing the full scope of the molecular design
landscape. In response, DEG emerges as a generative model optimized for data efficiency, capable of
learning from much smaller datasets compared to standard benchmarks. Its core mechanism involves
a learnable graph grammar, which generates molecules following a series of production rules. These
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Model Generation Strategy Methodology Venue
VGAE all-at-once VAE-based NeurIPS workshop 2016
GraphVAE all-at-once VAE-based ICANN 2018
MPGVAE all-at-once VAE-based arXiv 2020
Regularized VAE all-at-once VAE-based NeurIPS 2018
MolGAN all-at-once GAN-based ICML workshop 2018
GraphNVP all-at-once Flow-based arXiv 2019
GDSS all-at-once Diffusion-based ICML 2022
DiGress all-at-once Diffusion-based ICLR 2023
Wave-GD all-at-once Diffusion-based NeurIPS 2023

JT-VAE fragment-based VAE-based ICML 2018
MHGVAE fragment-based VAE-based ICML 2019
HierVAE fragment-based VAE-based ICML 2020
MoleculeChef fragment-based VAE-based NeurIPS 2019
MoLeR fragment-based VAE-based ICLR 2022
PS-VAE fragment-based VAE-based NeurIPS 2022
MiCaM fragment-based VAE-based ICLR 2023
Modof fragment-based VAE-based Nature Machine Intelligence 2021
GCPN fragment-based RL-based NeurIPS 2018
DeepGraphMolGen fragment-based RL-based Journal of Cheminformatics 2020
RationaleRL fragment-based RL-based ICML 2020
FREED fragment-based RL-based NeurIPS 2021
GFlowNet fragment-based GFlowNet-based NeurIPS 2021
MARS fragment-based Sampling-based ICLR 2021
MIMOSA fragment-based Sampling-based AAAI 2021
DEG fragment-based sampling-based ICLR 2022
Mol-CycleGAN fragment-based GAN-based Journal of Cheminformatics 2020

CGVAE node-by-node VAE-based NeurIPS 2018
SbMolGen node-by-node VAE-based Chemical Science 2020
GraphAF node-by-node Flow-based ICLR 2020
GraphDF node-by-node Flow-based ICML 2021
STGG node-by-node Spanning-tree-based ICLR 2022

Table 1: Recent representative works of 2D molecule generation.

rules are autonomously derived from the training data, requiring no manual intervention. Additionally,
the model undergoes further refinement through grammar optimization, facilitating the integration
of extra chemical insights. Training of the DEG model is conducted through Monte Carlo (MC)
sampling [58] and the REINFORCE algorithm [76].

Additionally, it’s noteworthy to mention a GAN-based method designed for molecular optimization,
Mol-CycleGAN[55]. More specifically, it employs the CycleGAN [88] architecture. A key strength
of Mol-CycleGAN lies in its capacity to discern and learn transformation rules from compound
sets, based on their desired and undesired property values. It functions within a latent space,
which is trained by another model. Specifically, in the case of Mol-CycleGAN, this latent space is
derived from the JT-VAE model we discussed earlier. The capability of Mol-CycleGAN to generate
molecules with particular desired properties is well-demonstrated, particularly in terms of structural
and physicochemical attributes. Notably, the molecules produced by this model closely resemble their
initial forms, with a tunable degree of similarity, adjustable through a designated hyperparameter.

3.3 Generation Strategy III: Node-by-node

In addition to synthesizing molecules directly or employing substructures as foundational building
blocks, recent advancements have introduced alternative methodologies for molecular generation.
These novel approaches, often referred to as “node-by-node", involve constructing molecules at the
most fundamental level, atom by atom.

CGVAE [50] is an VAE-based generative model which builds gated graph neural networks
(GGNN) [48] into the encoder and decoder. CGVAE uses GGNN to embed each node in the
input graph G to a latent vector sampled from a diagonal normal distribution. The decoder of CGVAE
initializes nodes with latent variables and generates edges between these nodes sequentially based
on two decision functions: FOCUS and EXPAND. Specifically, the FOCUS function determines which
node to visit and the EXPAND function decides which edges to add from the focus node in each step.
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Dataset Description Number of molecules Link

QM9 Stable small organic molecules made up of CHONF atoms 133, 885 http://quantum-machine.org/datasets/

GDB-17 Enumeration of small organic molecules up to 17 atoms > 166, 000, 000, 000 http://gdb.unibe.ch/downloads/

ZINC15 Commercially available compounds > 750, 000, 000 http://zinc15.docking.org/

ChEMBL Bioactive molecules with drug-like properties > 2, 000, 000 https://www.ebi.ac.uk/chembl/

PubChemQC Compounds with quantum chemistry estimated
property based on density functional theory 3, 981, 230 http://pubchemqc.riken.jp/

DrugBank FDA-approved drugs and other drugs public available > 14, 000 https://www.drugbank.ca/

Table 2: Representative datasets for 2D molecule generation.

The procedure will terminate when meeting the stop criteria. Notably, during the generation, all
node representations should be updated once the generated subgraph changes. Furthermore, EXPAND
function applies valency masking to guarantee chemical validity. CGVAE utilizes gradient ascent in
the continuous latent space to optimize these molecules based on specific numerical properties.

Lim et al. propose another VAE-based method which is able to generate molecules with target
properties while maintaining an arbitrary input scaffold as a substructure. In our survey, we refer
to their method as SbMolGen. Its encoder adopts a variant of interaction network [5, 25] to encode
one complete molecule graph G into a latent vector z, from which the decoder is trained to recover
molecules. Specifically, the decoder takes a scaffold S as input and sequentially adds nodes and edges
to S based on three loop stages namely NODE_ADDITION, EDGE_ADDITION, NODE_SELECTION and
a extra final stage named ISOMER_SELECTION. Furthermore, we can concatenate the whole-molecule
properties vector and scaffold properties vector with z sampled from latent space to condition the
decoding process.

We have previously introduced two VAE-based methods for molecule generation in a node-by-node
fashion. Additionally, there are flow-based methods available for generating molecules. GraphAF [68]
is a representative flow-based model, whose concept is actually similar to the previously introduced
GCPN. Both formulate the problem of molecular graph generation as a sequential decision process.
Specifically, beginning with an empty graph, GraphAF sequentially generates a new node at each
step, which is based on the structure of the current sub-graph. Subsequently, the edges connecting
this newly added node with the existing ones are systematically formed, taking into account the
existing graph structure. This iterative process continues until the generation of all nodes and edges
is complete. The core concept of GraphAF involves defining an invertible transformation from a base
distribution (like a multivariate Gaussian) to a molecular graph structure G = (A,X). In every round
of generation, GraphAF, given the existing sub-graph structure, employs a stack of multiple layers of
a modified version of Relational GCN [64] to derive the embeddings for each node. Following this, a
sum-pooling operation is applied to these node embeddings to obtain the embedding of the entire
sub-graph. This sub-graph embedding is then set as the mean and standard deviations of Gaussian
distributions, which are subsequently used to generate the nodes and edges. Additionally, GraphAF
suggests that the molecule generation process can be refined through reinforcement learning, aiming
to optimize the properties of the molecules generated.

It’s important to recognize that, akin to GraphNVP [54], GraphAF also converts discrete graph data
into continuous data through the addition of real-valued noise, a technique known as dequantization.
However, this dequantization process hinders the models’ ability to accurately represent the original
discrete distribution of graph structures. This presents a significant challenge in model training, as
it impedes the capability to accurately capture the true distribution of graph structures, resulting
in a diverse range of molecules generated. To address the challenges posed by dequantization,
GraphDF [52], a novel approach building upon GraphAF, introduces the generation of molecular
graphs using discrete latent variables. In GraphDF, all latent variables are discrete and sampled from
multinomial distributions. We use a discrete flow model to reversibly map discrete latent variables to
new nodes and edges. The discrete transform used in the discrete flow is a modulo shift transform.
Apart from employing discrete latent variables, the process of molecule generation of GraphDF is
similar to GraphAF.

STGG [1] stands out from prior VAE-based and flow-based methods as the first framework to
utilize a spanning tree-based approach for molecular graph generation. This unique methodology
conceptualizes the generation of molecular graphs through the construction of a spanning tree along
with residual edges. This approach leverages the inherent sparsity found in molecular graphs, enabling
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the use of efficient tree-constructive operations to establish molecular graph connectivity. STGG
ensures that the generated molecular graphs adhere to chemical valence rules by applying constraints
based on the intermediate graph structure formed during the construction process. Additionally,
STGG introduces an innovative Transformer [73] architecture, incorporating tree-based relative
positional encodings, to effectively facilitate the tree construction procedure.

3.4 Discussion

The generation at different levels can have different advantages in specific applications. While in
general, the fine-grained level manipulation at node level is flexible, while it may be less efficient for
generation and has difficulty in modeling higher-level (sub)structure information. While the fragment-
based pipeline allows edition of sub-structures of a molecule, which can be often meaningful to some
specific functionality and reaction. Finally, the once-for-all scheme can be efficient while it may
sometimes lack enough flexibility for incremental generation and optimization.

4 Datasets and Evaluation Metrics

Datasets We present a compilation of prominent publicly accessible datasets, commonly employed
in molecule generation and optimization endeavors, as depicted in Table 2. Among them, ChEMBL
and DrugBank are continually evolving, with periodic updates to their contents.

Evaluation Metrics Generation and optimization for molecules adopt two different sets of eval-
uation metrics. Molecule generation evaluates the overall quality of generated molecules from a
statistical perspective in terms of these metrics, including validity (the percentage of generated
molecules that are chemically valid), novelty (the fraction of generated molecules not appearing in the
training data), diversity (the pairwise molecular distance among generated molecules), uniqueness (ra-
tio of unique molecules) and reconstruction (the percentage of molecules which can be reconstructed
from their latent variables). For molecule optimization, it adopts another set of metrics for evaluation
on the basis of multi-property of generated molecules , such as quantitative estimate of drug-likeness
(QED) [17], synthetic accessibility (SA) [7], octanol-water partition coefficients (logP) [62] and so
on.

5 Challenges and Future Directions

Despite the significant achievements of graph-based deep learning in automating molecule design,
the complexity of molecular structures presents ongoing challenges. In this section, we suggest three
future directions for further research.

Macro-molecules Design The current body of research primarily concentrates on the design of
small molecules, and its effectiveness diminishes considerably when applied to the design of larger
molecules such as polymers. The complexity of large molecular systems is inherently much greater
than that of small molecular systems, naturally leading to increased modeling difficulties. The failure
also stems from the many generation steps required to realize larger molecules and the associated
challenges with gradients across the iterative steps [36]. Therefore, it is imperative to devise novel
approaches specifically tailored to handle larger molecules.

3D Drug Discovery The generation of 3D molecular geometries is an area that has not been
extensively explored. Compared to 1D SMILES-based and 2D graph-based representations, the
addition of a third dimension considerably broadens the molecular space to be examined, thereby
raising the level of complexity [83]. Nonetheless, the generation of 3D molecules is both meaningful
and necessary, given that accurate 3D coordinates are crucial for precise prediction of quantum
properties [66]. Despite its importance, there are relatively few studies focused on this aspect,
highlighting a need for further research and development in this field.

Structure-based Drug Design Chemical space is vast, yet the subset of molecules with certain
desirable properties is much smaller by contrast, e.g. activity against a given target, that makes
them well suited for the discovery of drug candidates [86]. Structure-based drug discovery aims to
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design small-molecule ligands that bind with high affinity and specificity to pre-determined protein
targets [3], which is a fundamental and challenging task in drug discovery, essentially sampling
compounds from promising sub-regions of chemical space. Nevertheless, the successful application
of machine learning to the problem of structure-based drug design remains relatively limited in the
current literature. This highlights a substantial challenge and, simultaneously, presents a significant
opportunity for breakthroughs and progress in future research within this domain.

6 Conclusion

The generation of molecules with desired properties holds paramount importance, particularly in
the pharmaceutical industry. In this context, we have introduced a broad array of graph-based deep
learning models for molecular deisgn, categorizing them into three distinct groups based on their
generative strategies. Additionally, we have compiled a comprehensive overview of public datasets
and the evaluation metrics widely used in this field. In the end, we delve into the challenges and
prospective future developments in this dynamic and evolving area.
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